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1 Fano’s Inequality, Conditional Entropy, and Introduction
to Ergodic Theory

1.1 Fano’s inequality

Lemma 1.1 (Fano’s inequality). Let p = P(α 6= β) be the “probability of error.” Then

H(α)−H(β) ≤ H(α | β) ≤ H(p, 1− p) + p log(|X | − 1),

where p, 1− p is a distribution on {0, 1} with probability p, 1− p.

Proof. Introduce ξ valued in {0, 1} by

ξ =

{
1 α = β

0 α− β.

Then P(ξ = 1) = 1− p. Then

H(α | β) ≤ H(α, ξ | β) = H(ξ | β)︸ ︷︷ ︸
≤H(ξ)=H(p,1−p)

+H(α | ξ, β)

The right hand side is equal to

((((((((((((
P(ξ = 1)HP(·|ξ=1)(α | β)0 + P(ξ = 0)︸ ︷︷ ︸

p

HP(·|ξ=0)(α | β)︸ ︷︷ ︸
≤log(|X |−1)

.

1.2 Entropy conditioned on a σ-algebra

Definition 1.1. Let α take values in a finite set, and let G ⊆ F be a σ-algebra. The
conditional entropy H(α | G) is

H(α | G) := inf{H(α | β) : β is G-measurable}.
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How can we actually determine this value?

Proposition 1.1. Suppose G = σ(β1, β2, . . . ). Then for all α,

H(α | G) = lim
n
H(α | β1, . . . , βm).

Proof. The limit exists, and ≤ follows. So we need to prove ≥. Fix a G-measurable β taking
values in Y = {y1, . . . , yk}. Claim: for any ε > 0, there exist m and β′ : Ω→ Y such that β′

is determined by (β1, . . . , βm) and P(β 6= β′) < ε. First, if E ∈ G¡ then for all ε > 0¡ there
exists m and E′ ∈ σ(β1, . . . , βm) such that P(E∆E′) < ε (as such Es form a σ-algebra).
Choose m and F1, . . . , Fk−1 ∈ σ(β1, . . . , βm) such that P({β = yi}∆Fi) < ε/(k − 1). Let
E′1 : F1, E

′
2 := F2 \ F1, . . . E

′
k−1 := Fk−1 \ (F1 ∪ · · · ∪ Fk−1), Ek = Ω \ (F1 ∪ · · · ∪ Fk−1).

Define β′ by β′(ω) = yi fi ω ∈ Ei. We have

P({β 6= β′}) ≤
k−1∑
i=1

P({β = yi}∆Fi) < ε.

Let ε > 0, and choose m and σ(β1, . . . , βm)-measurable β′ as above. Now

H(α | β1, . . . , βm) = H(α | β1, . . . , βm, β′)
≤ H(α | β′)
≤ H(α, β | β′)
= H(β | β′) +H(α | β′, β)

≤ H(ε, 1− ε) + ε log(|Y | − 1) +H(α | β).

Example 1.1. The Borel σ-algebra on [0, 1] is generated by (Bn), where Bn is uniform on
{0, 1} and represents the n-th binary digit.

1.3 Introduction to Ergodic theory

In dynamical systems, we have a state space X and a transformation T : X → X which
tells you what happens after a unit of time. Different kinds of dynamics arise when you
talk about preserving different kinds of structure on X.

Example 1.2. Let X be a smooth manifold and T be a smooth map. This is called smooth
dynamics.

Example 1.3. Let X be a topological space and T be continuous. This is called topological
dynamics.

Example 1.4. LetX ⊆ C be open and T be holomorphic. This is called complex dynamics.

Ergodic theory studies long-run statistical properties in dynamics. The key object is a
T -invariant probability measure on X.
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Definition 1.2. A measure-preserving system (MPS) is a triple (X,µ, T ), where X is
a measurable space, µ ∈ P (X), and T : X → X is measurable such that µ(T−1[A]) = µ(A)
for all measurable A ⊆ X (i.e. T∗µ = µ). We say T is invertible if there exists a
measurable S : X → X with S∗µ = µ such that S ◦ T = T ◦ S = idX a.e.

Example 1.5. Let T = R/Z. Fix α ∈ T, and define Rα sending x 7→ x+ α. Similarly, we
can look at Td. Lebesgue measure on the unit-interval is T -invariant.

Example 1.6. Let k ≥ 2. Then let T×k : T → T send x 7→ kx. Lebesgue measure is
T×k-invariant.

These two are very different systems in terms of the dynamics. Here is how this relates
to probability theory:

Let X be a finite set, and let (ξn)n∈N be an X -valued process.

Definition 1.3. (ξn)n is stationary if for all k ≥ 1, the distribution of (ξn, . . . , ξn+k−1) ∈
P (X k) is independent of n.

Lemma 1.2. Define T : XN → XN sending (xn)n 7→ (xn+1)n. Then (ξn)n is stationary if
and only if its joint distribution µ is T -invariant.

We will call this a shift system.
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