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1 Fano’s Inequality, Conditional Entropy, and Introduction
to Ergodic Theory

1.1 Fano’s inequality

Lemma 1.1 (Fano’s inequality). Let p = P(a # ) be the “probability of error.” Then
H(a) = H(B) < H(a| B) < H(p,1 —p) + plog(|X| - 1),

where p,1 — p is a distribution on {0, 1} with probability p,1 — p.

Proof. Introduce £ valued in {0,1} by

Then P(( =1) =1 —p. Then
H(a|B) < H(e, €| B) =  H(E|B) +H(alg,p)
N——
<H(§)=H(p,1-p)
The right hand side is equal to

P =1 =0 (@ | B)° + P(¢ = 0) Hp(e—o)(a | B). O
—_—T——

» <log([X|-1)

1.2 Entropy conditioned on a o-algebra

Definition 1.1. Let « take values in a finite set, and let G C F be a o-algebra. The
conditional entropy H(« | G) is

H(a | G) :=inf{H(« | B) : B is G-measurable}.



How can we actually determine this value?

Proposition 1.1. Suppose G = (P41, B2,...). Then for all a,
H(a|G) :liTanH(a | B1s--- s Bm)-

Proof. The limit exists, and < follows. So we need to prove >. Fix a G-measurable g taking
valuesin Y = {y1,...,yr}. Claim: for any € > 0, there exist m and 8’ : Q — Y such that §’
is determined by (51, ..., 3n) and P(8 # B') < e. First, if E € Gj then for all € > 0j there
exists m and E' € o(f1,...,Bm) such that P(EAE’) < ¢ (as such Es form a o-algebra).
Choose m and F1,...,Fy_1 € o(f1,...,0m) such that P({5 = v }AF;) < e/(k—1). Let
Ei : P, Eé = FQ\Fl,...E]::_l = P4 \ (Fl U”-UFk_l), E, = Q\(Fl U'-‘UFk_l).
Define 8’ by ' (w) = y; i w € E;. We have

k—
P({5 # B'}) < Z ({B=wi}AF) <e

Let € > 0, and choose m and o(f4, ..., B, )-measurable 5’ as above. Now
H(alﬁl,---ﬁm): al B, Bm,B)
alp)

B1B)+H(a| B, p)

H(
H(
H(a, 818
H(
H(e,1—¢)+elog(lY]|—1)+ H(a | B). O

Example 1.1. The Borel o-algebra on [0, 1] is generated by (B,,), where B, is uniform on
{0,1} and represents the n-th binary digit.
1.3 Introduction to Ergodic theory

In dynamical systems, we have a state space X and a transformation T : X — X which
tells you what happens after a unit of time. Different kinds of dynamics arise when you
talk about preserving different kinds of structure on X.

Example 1.2. Let X be a smooth manifold and 7" be a smooth map. This is called smooth
dynamics.

Example 1.3. Let X be a topological space and T" be continuous. This is called topological
dynamics.

Example 1.4. Let X C C be open and T be holomorphic. This is called complex dynamics.

Ergodic theory studies long-run statistical properties in dynamics. The key object is a
T-invariant probability measure on X.



Definition 1.2. A measure-preserving system (MPS) is a triple (X, u, T'), where X is
a measurable space, 1 € P(X), and T : X — X is measurable such that pu(T71[A]) = u(A)
for all measurable A C X (i.e. Tiup = p). We say T is invertible if there exists a
measurable S : X — X with S,pu = p such that SoT =T o0 5 =idx a.e.

Example 1.5. Let T = R/Z. Fix o € T, and define R,, sending = — x + «. Similarly, we
can look at T?. Lebesgue measure on the unit-interval is T-invariant.

Example 1.6. Let £ > 2. Then let Ty : T — T send x — kx. Lebesgue measure is
T -invariant.

These two are very different systems in terms of the dynamics. Here is how this relates
to probability theory:
Let X be a finite set, and let (§,)nen be an X-valued process.

Definition 1.3. (§,), is stationary if for all £ > 1, the distribution of (&,,...,&{1k-1) €
P(X*) is independent of n.

Lemma 1.2. Define T : XN — XN sending (2,)n = (2ns1)n. Then (&,)n is stationary if
and only if its joint distribution p is T-invariant.

We will call this a shift system.
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